Technology Student Association

National Conference and Competitions

Electronic Research and Experimentation

Internet Controlled Robotic Arm

Baltimore, Maryland
June 28 —July 2, 2010

Table of Contents

Brief Description Of DEVICEuvviiiiiii ettt et e e e e e e e e sebrr e e e e e e eeeesaasraeeeeeeeesnnnns 1
ProjeCt APPLICAtIONScoooiiiiiieeeeee et e e e e e e e e e esrabrereeeaeeeesnsasaeeeeeeeesnnnnnns 2
SChemMatiCs & DIAGIramMS..........cooiiiiiiiieee ettt e e e e e ee b e eeeeeeeeeetarreeeeeeeesesnssseaseeeessennnns 3
Evidence of EXPerimentation...........ccccooooiiiiiiiii ittt e e e e e e e e e e e eanes 5
Plan Of WOTK LOEcvviiiiiiiiiieiteeeee ettt e e et e e s e e e e e sabba e e e e e e e e e s nsbssereeeeessesnsrens 8
References and RESOUICEScocueiiuiiiiiiiieeeei ettt e r e s e e neesaneeas 9
LR U=T o T ot QYo o 1= U Lol X3ROt 10
APPENTIX A — CAD DIaWiNES cecvvveeiieiiiiieiiieieieieieeseeesesenns 10
APPENIX B — SNOP PROTOS ...uvviiiiiiiiiciiiieieeee ettt et eeesabar e e e e e e e sabaraereeeeens 11
Appendix C— PIC Basic Linear ActUator Programeeeeeeeeeeeieeeeiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeens 14
Appendix D — PIC BasiC GriPPEr PrOZramuueeeeeeeeeeiiiiiiieeiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeaaaee s 19
Appendix E—JAVA Arm ProtOCOl......cccuuveeiieiiiececiieeiee ettt eeeirrree e e e e saareeeee e 23

Appendix F — JAVA Server ProtOCO|uveevieiiiiieiiieeieee ettt e senareneee e 26

Page 1

Brief Description of Device

This year we began with the concept of creating an Internet controlled arm,
operational from any Internet-enabled computer. To succeed in creating this project we
focused on three main areas essential to the operation of the arm which were design,
construction, and intricate programming, all of which led to the development of the
prototype we have on display.

In designing the arm, we utilized Computer Aided Design, or CAD. By first making
a three-dimensional assembly, we were able to avoid basic mechanical flaws, enabling
us to reconfigure without reconstructing. The design was modeled after the basic
principles used in the construction of cranes, yet adapted to a smaller scale, reducing
the materials and weight required to meet the goals of the arm.

The primary material used in the fabrication of the
arm was aluminum. Aluminum is lightweight but strong and
provides a rigid, parallel structure. To further strengthen the
arm we utilized a specific brand of aluminum known as 80-20.
The 80-20 is a 6061 aluminum alloy with an anodized finish,
but it is the shape of the 80-20 that most increases the
strength of the arm. This unique cross section is designed to

Image 1: CAD Rendering
of the Shape of have mass where stresses are greatest while making it
80-20 Aluminum.

possible to use the voids for connectors and adaptions.

In the process of the arm’s development, the programming contained the most
complexity. Accomplishing computer-to-circuit-to-arm communications required a
variety of different programming languages. After utilizing these codes to make the
individual programs, it was essential to make a communication protocol that made the
programs act succinctly. This took hours of work and continuous program development
with additional time spent troubleshooting.

By breaking our project down into design, construction, and programming we
were able to reach our goal and assemble a sturdy, functioning arm.

Page 2

Project Applications

Mechanical arms are a basic necessity in many robotic applications. A functional
robot is usually equipped with some sort of arm that utilizes a gripper or a claw device,
enabling the robot to accomplish a wider variety of different tasks. From this starting
point there were several different applications for an Internet controlled robotic arm.

It was immediately apparent that this kind of robot would be ideally suited for
several different types of medical applications. When we began researching, we found
several examples of robots capable of precise movements while being controlled
remotely from a distance. This would allow specialists in particular surgeries to be able
to perform out-of-country operations without even having to leave their location. This
could provide more immediate results for many different types of surgeries.

In commercial industries, this kind of robot would be extremely useful with a
human interface. It would be very lucrative for international manufacturers to have a
robot that could be controlled from a distance from the actual area of production. This
would allow wireless access to the robot and bypass hazards in areas unsafe to humans.
It would also allow for centralization of industrial processors which increases efficiency
in production. Industrial applications and designs could vary, but the basic idea of
Internet communication would be valuable and effective.

Whether via satellite, hard line, or Wi-Fi, the Internet is accessible from almost
anywhere on the planet. It is because of this availability that the Internet has grown so
swiftly and facilitated many technological advances. By utilizing the Internet’s
capabilities, we will be able to control this robot from almost anywhere in the world to
accomplish a variety of specialized applications.

Page 3

Schematics and Diagrams (1)

+
o
=

R1
25K
iH—r1—o

Parallel LCD Display
Jameco Part# 618003

VSSs
VDD

Contrast

RS
RW

Enable

Do
D1
D2
D3
D4
D5
D6
D7

>
jai

0-|J:com|—

f\f]\f'\f\f]\
o oo |~ |

C2+

9 Pin D-Sub

+5v mw< Mw ®
= Ac“_\ L
Jpo_v oM_I+
258 .
ESS cat
Y
1 = +
IC1
Bdy—| mcLrvePREs RB7 |40
47K 2] Raomno T
_*1 RA1ANA RB5 | %
_*] RrA2iAN2 rB4 | 7
| 1) 2] rasianz rB3 |
2 1 Rra4AN4 RrB2 | *°
g _7] RrasANS RB1 |4
4 8] Reoans Rreo |
| 5| 21 REVANT vob |
t 91 Re2/ANg vss |®
| vop RD7 | |_|
| " ne 2] vss RDs | 2 =
| 8 ne H 2| osciRrA7 RDs | 28
| ° Ne = e “ | oscoRAG RD4 | 2
110 Ne 5] reo re7 |25
1 ﬂ_=_|. | rcricerz RCs |22
i o1 e 7| Rreziccpi Res |24
13 Hﬂmmu_u Hﬂmmu_u 5] Rres rRea |2
ik | roo RD3 |22
|ﬁ 21 RD1 RD2 |2
- 18FB7TA

c2- WF| ¢t
14 =
THN TioUuT |24 c6
T2N T20UT | +
RIOUT R1IN %
R20UT R2IN
MAX232CPE =

Pololu 15A Motor Driver

DIR

NC ———

NC - o,
NC —wm FF2
NC -wm FFq
NC - RESET
——m=- pYMH
NC - GND

Schematic 1: The electrical circuit used to operate the motor that opens

or closes the gripper.

Page 4

Schematics and Diagrams (2)

Ic1 .
®
VDD
|2 wv wv sy |
st £ 5
O E |
s2 c
Sy
GND FEAT & 3 |
Clarostat Encoder m.ﬁ_ @ =
600-128-CLR _ = _
+5Y o w
@ wsX =
(=] -
| =77 g3 581
¥ |l = = |
x&
+ B vcirveeRes re7 |#0
ATK 2] paoano rB6 | %
= _ 3] rauaNt RBs/PWMa|
_*) raziaNz RBa/PWMS |
vss | 1| 5| razians rBIPWME|E
vop |2 5] ragiang rB2IPWMZ|
> O Contrast] 2 _7| rasiaNs RBA/PWMT L
o O 4 8 33
o © RS REO/ANG RBO/PWIMO
K7 m rRW | ° &1 REV/ANT vop |
O © Enabee t) Rezans vss |
()] ﬂ | avoD RO7PWMT|®
w Dn.m ool 7 nc 2] pvss RD&RWME| 2
D o p1 L% ne | oscira7 RDsPWM4| 2
= 0O pz % nc | oscaras rD4 | 77
m O D3 10 NG 15 G G 26
G c (B [5] reo RCT |25
O © p4 |1 5| reicep2 RCs | 2%
— ps |12 o "7} RroziccP rCs |2
13 — 18 23
D6 oor oopr | —] s rca |2
p7 | 1 roo rD3 |22
21 rot rRD2 |21
18F4331

|||—

X1
1]
AN
3 m 7
4] 8
mAﬁ 9
3 \; 9 Pin D-Sub
C1+ ==
v |2 -
c1- e
Ca+
C2- :.._mi_
14 =
TIN TIOUT |% cé
TZN T20UT Hw +
9] R1IQUT RI1IN 5
2 1 R20UT R2N
MAX232CPE =
+H2V
IC4 Jw I_
bkt kd kd kd
3 £ g a
| s =z
o o G

Pololu 15A Mator Driver

21HH]
sepefig
L1 1 11 [|
HHH
0 U Qoo o
Z Z2 Z Z Z -

Schematic 2: The Wrist Joint Electrical Schematic. Included Are The PIC

Microcontroller, The Encoder, The Motor Driver, And The Motor.

Page 5

Evidence of Experimentation

Components:

The circuit of the Internet arm consists of several types of components that
interact with each other to make the arm move. The first component is the brains of the
arm which consists of four Programmable Integrated Circuits, or PIC Microcontrollers.
Another type is the MAX32CPE RS-232 serial driver/receiver which lets the PIC
microcontrollers receive commands from the server. The third type of component in the
circuit is the motor drivers. These permit the PIC microcontroller to move the motors.
The final type of component of the arm is the position sensors and limit switches. These
allow the PIC microcontrollers to detect the positions of the motors and prevent the
arm from injuring itself.

These components interact in various ways. When the circuit sends commands to
the server, the server sends this to the R$232 integrated circuit (IC). The RS232 IC
receives commands from the server and forwards them to PIC microcontroller. The
microcontroller then moves the motors in the correct direction, using the position
sensors to keep track of how much they have moved and how much further they have
to go. If while the motors are moving one of the limit switches is triggered, the arm
ceases its movements and waits for a command to reverse.

Ideas and Testing:

When constructing the circuit initially, we did not know which sensors we would
be using. This led to experimenting with the different types of sensors and
microcontrollers to fit these sensors. The first sensor with which we experimented was
the position sensor. We also had to experiment with different PIC microcontrollers to fit
our position sensors. Finally we experimented with limit switches and their placement
for complete motor overload protection. In our initial mechanical design we intended to
use motors at each joint, which would only require rotational sensing. In order to detect
the position of each motor we chose to use quadrature encoder position sensors. As
different encoders have different resolutions, we had to experiment with several
different models to determine which best fit our needs. We had three different models
of encoders to test. The first was a VEX optical shaft encoder. We also had a Honeywell
Clarostat 600-128-CBL encoder and finally a few 48 slot encoder wheels and readers for
them. This resulted in a design change to use two linear actuators and three normal

Page 6

motors instead of five motors. The linear actuators have built in potentiometer position
sensors which completely eliminated the use of our other encoders on them.

In this process, we found the PIC18F4331 microcontroller we had to use for
encoders required more complex programming for analog to digital conversion (ADC)
than we were used to. We could not merely define the justification of the bits and then
which ports were analog to input from them. When we tried this initially we could only
read one port if the ports were adjacent. We tested multiple configurations of the
circuit to try to get this microcontroller to function as we intended.

After we had all of the hardware developed we worked on preventing the arm
from overloading the motors by pushing against the table or some other immovable
object. Limit switches proved to be the most efficient solution. We used several
different types of switches to achieve maximum protection. The linear actuators had
built in limit switches so there was no need for extra limit switches. The turntable had
lever switches which were also available for use.

Analysis:

We tested all of these different components of the circuit, and in time we found
results. The VEX optical shaft encoders were too large and bulky to be easily mounted
where we needed them on the arm. The Honeywell Clarostat 600-128-CBL encoder was
small and easily mounted, but it had a 200 rpm limit which would not have worked for
our turntable motor. We were able to use it for the wrist of the arm, because it only
moves at 4.5 rom. The slotted wheel method was perfect for the turntable motor. We
were able to mount it onto the shaft of the motor and read the positions of a 2500 rpm
motor. In the end, we ended up using two of our three possibilities for the encoder.

After further research on the PIC18F4331 microcontroller, we discovered that
ADC is dealt with in groups rather than individual ports like most other PIC
microcontrollers. We could have input through groups rather than ports, but since this is
less common than most other PIC microcontrollers it makes the code more difficult to
read. As code reliability is important in any application, we decided to switch
microcontrollers to the PIC16F877A, which has the normal PIC microcontroller ADC
syntax. This solved our problems with ADC completely.

When testing limit switch positions we discovered that placing two limit switches
on the very end of the gripper would best prevent table impact. One other limit switch

Page 7

was necessary to detect when the gripper was fully open, and two more were needed to
prevent the wrist from over extending itself. The linear actuators had built-in limit
switches and the turntable switches proved to be the most convenient and fortunately
were placed such that they could be soldered to without any modification. Mounting
separate limit switches would have been far more complicated to mount and less cost
effective.

Plan of Work Log

Page 8

Date Task & Comments Time Team
We worked on CAD designs for the arm, we sketched the connecting base plates for the joints on Solidworks. Also King
9/10/2009-9/21/2009 i_ncludec_i was a Delrin CAD. The main components we selecte_d were aluminum, d_elrin,and 80/20 becaus_e oftheir 6 Hours Shepard
light weight and strength. We began GUI encoder programming, changed an osscilator out. We made a simple GUI Sorrels
with Swing JAVA Spencer
P
10/8/2009 Completed part two of the rotational base for the internet arm. We also worked on a second gripper prototype. 3 Hours sh lngd
epar
We started the server-side Java program, creating comunication protocol. Working on serial communication with
the PIC microcontroller. We are currently using a socket to communicate over a LAN. We worked further on the Kin
10/26/2009-10/29/2009 U§te‘rside c?mmunications (GUI)fo-rtheinternetarm.We established new panels and began layout, but had‘ 6.5 Hours Shepagrd
difficulty with the layout. We redrilled and remounted the base motor. Also, the platform was cut to regulation Spencer
size, and two 30 degree angles were cut to fit the posterboard. We worked further on serial communications and
learned how to identify necassary ports.
11/19/2009 We succesfully programmed serial communication link to operate servo 3 Hours Spencer
Testing: we were able to turn a servo motor via PIC microcontroller, and also flash an LED on and offfrom a PC. We King
12/7/2009-12/10/2009 assem?led three main segment.joints with modified hinges and created a skeleton frarﬁe ofthe arm on Solidworks 2.5 Hours Shepard
and finished CAD work of the main table. We outputted the motor encoder target PIC microcontrollers from the PC. Sorrels
A motor controller H-bridge was blown out. Spencer
We fixed the motor drivers and worked on outputting integers over a LAN.We worked on designing CAD variations King
12/14/2009-12/17/09 |ofthe pulley design, for operatingthe arm. We successfully outputted a 16-bit number over the network to 5.5 hours Shepard
command a motor with an encoder. We were able to report the position back to the server. Spencer
CAD designs continue to change, while the GUl and socket communication work continued. We constructed the King
1/7/2010-1/14/2010 |base ofthe arm based onthe CAD. From this a physical testing prototype was constructed. Amotor position was 10 Hours Shepard
outputted to a PIC microcontroller, but are having difficulties with multiple command strings. Spencer
1/18/2010-1/21/2010 We are.havingc?ntinuing problems with command strings, however have come close to solving it. Two motors now 6.5 Hours Spencer
work with PIC Microcontrollers
We have finally decided to switche the pulley system with linear actuators. The reduces PIC Micrcontrollers to two Shepard
1/25/2010-1/28/2010 [andtwo serial communicators. We have encoutered difficulties with which we can find no solution thus are 5.5 Hours Spencer
continuingtesting.
2/1/2010-2/4/2010 |We made design changes to account for the change to linear actuators. The CAD model was updated for changes. 5.5 Hours Spencer
2/8/2010-2/12/2010 |The computer we had been usingfor Pic Basic Programming had an unknown glitch when compiling. 6.5 Hours Spencer
2/15/2010-2/18/2010 |New serial ports were installed for more motor communication, and server protocol was made for receiving 7 Hours Spencer
2/22/2010-2/25/2010 We mounted th? th-ird section of the arm on CAD and constructed the segment. Encountered Macro error with 6.5 Hours King
motor communication that has not been solved yet Spencer
3/1/2010-3/4/2010 The arm base was completed and cooling fans were added to the base for colling the electronics. The gripper for 7 Hours Shepard
the arm, a leadscrew system, was mounted to the arm Spencer
3/8/2010-3/11/2010 The final circuit was complet_ed, but burned two_L_CDs out with high amperage. The fram of the arm with motors is 8 Hours Shepard
completed, now we are placingsensors on specificareas ofthe arm. Spencer
3/15/2010-3/18/2010 |The finalised circuit was debugged and commands from computer work. We wired limit switches on the arm. 6 Hours Spencer
3/22/2010-3/25/2010 |Added astetics tothe arm and worked on encoder brackts. 4.5 Hours Shepard
4/1/2010-4/6/2010 Completed encoder and shaft brackets, set upt testing prototypes. Wrist limit switches programmed. 6 Hours Shepard
Ki
4/8/2010-4/12/2010 [Created brackets for specialised limit switches on the end of the arm and mounted on gripper plate 6 Hours s ing
pencer
Ki
4/13/2010-4/18/2010 |Began final documentation and poster, while programming limit switches and makingfinal changes 7 Hours s ing
pencer
4/19/2010-4/21/2010 [Finalised the poster and technical report for the State Conference 10 Hours King
5/3/2010-5/10/2010 Began work on the transition from LAN conjmunica?ion to Internet commu-nicatior?.We r}esearched webcams for 8 Hours King
use on the arm, and ordered 3 Microsoft LifeCam Cinema webcams to begin experimenting with Spencer
5/10/2010-5/17/2010 Conti'nued work on Programmingchanges from LAN to Internet communication and also began work on the final 7.5 Hours Spencer
housing for the arm inside of our shop.
Successfully were able to control two of the motors of the arm over the internet. Received a new leadscrew for the King
5/17/2010-5/24/2010 |gripper ofthe arm and adapted it to our existing gripper. This resulted in higher speed and a smoother running 7 Hours Shepard
gripper Spencer
Were completely able to control the arm over the internet utilising the GUI. Now we have begun work on King
5/24/2010-5/31/2010 |incoporating webcams into the GUI for remote control over the internet. The gripper is finished and work has 7.5 Hours Shepard
begun again on the final housing of the arm Spencer
We began testing with webcams using JMF studio and FMJ studio; media java programs, possibly being adapted to
6/1/2010-6/8/2010 transmit our webcams. However it can not trnasmit webcams that utilise the same driver, which means we must 8.5 Hours Spencer
purchase two other webcams of different manufaturers.
e
We have finished the final housing of the arm in the shop. We have stopped usingJMF and FMJ studios and are ng
6/8/2010-6/15/2010 . . . 10 Hours Shepard
writing our own programs, since these two programs are outdated, and non compatible. A
pencer
i
Have made two webcams function over the GUl as well as reconfirmed that the arm works over the internet. We 'ng
6/15/2010-6/22/2010 . R . . 12 Hours Shepard
have begun working on documentation and posters; updating them from the state versions. S
pencer

Page 9

References

Honeywell Sensing and Control. (2006). Clarostat encoder data sheet. Retrieved

June 26, 2010, from: http://www.alliedelec.com/Images/Products/

Datasheets/BM/CLAROSTAT/CLAROSTAT INDUSTRIAL-CONTROL

7530059.PDF

LTI-Civil. (2007). Overview package class library. Retrieved June 26,2010, from:

http://Iti-civil.org/doc/index.html|

MicroEngineering. Labs, Inc. (2005). PICBASIC PRO compiler. Colorado Springs,
CO: microEngineering Labs, Inc.
Sun Microsystems. (2010a). The really big index. Retrieved June 26, 2010 from:

http://java.sun.com/docs/books/tutorial/reallybigindex.html|

Sun Microsystems. (2010b). Java 6 API specification library. Retrieved June 26,

2010, from: http://java.sun.com/javase/6/docs/api/

Resources

Dr. Tim Davis, University Professor of Computer Sciences

David Kundinger, Senior, Mechanical Engineering

Chris Kennedy, Senior, Aeronautical Engineering

Page 10

Appendix A — CAD Drawings

Image 2: CAD Rendering Of The Final Arm

Front View of
The Arm

Page 11

Appendlx B- Shop Photos

-
_—

--:;-_ T Vo nioil

e rkh: Cod reqt®

Image 3 (Above): Wiring The Electronics On The Arm.
Image 4 (Below): Beginning Production On The First Arm Prototype

Page 12

Appendix B — Shop Photos (continued)
1
B ’Qv - o

Image 5 (Above): Programming PIC Microcontroller To Control Linear Actuators.
Image 6 (Below): Continuing Production Of The arm Using The Mill.

Page 13

Image 7 (Above): Experimental Circuit For Controlling A Motor
Image 8 (Below): Making The Final Circuits On Breadboards

Page 14

Appendix C — Linear Actuator Program

g 7 1 (= TR 877A linearactuators.pbp

' Started....2/18/10

' Microcontroller used: Microchip Technology 16F877A
' microchip.com

' PicBasic Pro Code: micro-Engineering Labs, Inc.

: melabs.com

' Program receives input from the server and

' moves the linear actuators to that position,

' decelerating as it approaches the target. The
' position of the linear actuators is determined
' using Analog-to-Digital conversion on the

' internal variable resistors in the linear

' actuators.

' 16F877A Pin Wiring

. 1 S 0 A e o o i S S S U

' ANQ Actuator one variable resistor

' AN1 Actuator two variable resistor

' RB3 Direction for Actuator one on motor driver

' RE4 Direction for Actuator two on motor driver

’ RC1 PWM for Actuator one on motor driver

d RCZ2 PWM for Actuator two on motor driver

d MCLR +5V through 4.7K Resistor

4 VDD +5V

d VsSS Ground

! 0s5C1 & 0s8cCZz 8 MHz Crystal w/ 2-22 pF Cap. to GND

Y i e i Defines—-=—-=-=-=-—-=—=—=—=——--
DEFINE OSC 8
DEFINE LCD DREG FORTD ' Define LCD Data port as PORTD
DEFINE LCD DBIT 4 ' Set starting Data bit as RD4
DEFINE LCD BITS 4 ' Set LCD bus size as 4
DEFINE LCD RSREG PORTE ' Set LCD Select Register port as PORTE
DEFINE LCD RSBIT O ' Select Select Register bit as REOQ
DEFINE LCD EREG PORTE ' Set LCD Enable port as FPORTE
DEFINE LCD EBIT 1 ' Select Select Register bit as REI
DEFINE LCD LINES 2 ' Set number of lines on display as 2
DEFINE LCD COMMANDUS 2000 ' Set command delay time in micro seconds
DEFINE LCD DATAUS 50 ' Set data delay time in micro seconds
DEFINE ADC BITS 10 ' Set number of bits in result as 8
DEFINE ADC CLOCK 3 ' Set clock source (rc = 3)
DEFINE ADC SAMPLEUS 50 ' Set sampling time in micro seconds
DEFINE CCP2 REG PORTC ' Set HPWM Channel 2 port to PORTC
DEFINE CCP2 BIT 1 ' Set HPWM Channel 2 pin to RCI
DEFINE CCPl REG PORTC ' Set HPWM Channel 1 port to PORTC
DEFINE CCPl BIT 2 ' Set HPWM Channel 1 pin to RCZ

Page 15

Appendix C — Linear Actuator Program (continued)

end limit
end limit
motorl dx
motor2 dx
MODE
targetl
server
targetz
server
motor
hibyte
lobyte
hibytel
lobytel
hibyte?2
lobyteZ
mot pwrl
mot pwr?2
positionl

positionZ2

diffl
diff2
PICSI
PICSC

ADCON1 = %10000100

CCP2CON = %00111111

CCPICON = %00111111

TRISA = %11111111

TRISB = %00000000

PORTB = 0

TRISC = %00000000

PORTC = 0

mode = 84

hibytel = 0

lobytel = 0

hibyte2 = 3

lobyte2 = 232

mot pwrl 0

mot pwrZ2 = 0
e i Main Code

initial:

PAUSE 50

1 VAR
2 VAR
VAR
VAR
VAR
VAR

VAR

VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR

VAR

VAR
VAR
VAR
VAR

0

PORTB. 0
PORTB.1
PORTB. 3
FORTB. 4
WORD
WORD

WORD

BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
WORD

WORD

WORD
WORD
PORTB. 2
PORTB. 5

End 1imit switch one pin

' End limit switch two pin

' Direction pin for motor
Direction pin for motor

one
two

' WORD for MODE value

' 16bit WORD variable for
' 16bit

' Motor
' Upper
Lower
Upper
Lower
Upper
Lower
Actuator one power

byte
byte
byte
byte
byte
byte

WORD variable for

variable
for
for
for
bl
for
for

targetl from
targetZ? from

for serial input
serial input
serial input
Actuator one
Actuator one
Actuator two
Actuator two

' Actuator two power

' 10bit variable resistor

' position

10bit variable resistor
position
Difference in positionl
Difference in positionZz
Serial input pin as RB.Z

Actuator one
Actuator two

and targetl
and targetZz

' Serial output pin as RB.5

Set

ANO,ANI,

to digital

Set
Set

Set

Set

Set

Set

Initialize all of the

r

CCPZ to PWM
ccrl to PWM

all pins 1in
all pins in

all pins in

RX/TX speed

Start up LCD

and AN3 to analog,

all other

mode
mode
PORTB as inputs
PORTE as outputs

PORTC as outputs

to 84 (9600 baud)

variables

Page 16

Appendix C — Linear Actuator Program (continued)

main:
' Set targets
targetl = hibytel*256 + lcbytel
target2 = hibyte2*256 + lobytel

' Check limit switches
IF end limitl = 1 OR end limitZ = 1 THEN GOTO stopl

ADCIN 0, positionl ' Read position of Actuator one
ADCIN 1, position2 ' Read position of Actuator two

' Set direction of motors
IF targetl < positionl THEN
motorl dx = 0
diffl = positionl - targetl
ELSE
motorl dx =1
diffl = targetl - positionl
ENDIF

IF targetZ < position2 THEN

motor2 dx = 0

diff2 = position2 - target2
ELSE

motor2 dx =1

diff2 = target2 - position2
ENDIF

' Move the actuators at a determined motor power
SELECT CASE diffl
CASE Is <= 10
mot pwrl = 0
HPWM 1,mot pwrl, 20000
CASE Is > 100
mot pwrl = 255
HPWM 1,mot pwrl, 20000
CASE IS < 100
mot pwrl = 2*diffl+55
HPWM 1,mot pwrl, 20000
END SELECT

SELECT CASE diff2
CASE IS <= 10
mot pwr2 = 0
HPWM 2, mot pwrZ2,20000
CASE IS > 100
mot pwr2 = 255
HPWM 2,mot pwr2,20000
CASE IS < 100
mot pwr2 = 2*diff2+55
HPWM 2,mot pwr2,20000
END SELECT

GOTO lcd

Page 17

Appendix C — Linear Actuator Program (continued)

END

lcds:
' Output targets and positions
LCDOUT SFE, 1
LCDOUT $FE, $80, "T1=",DEC4 targetl," Psl=", DEC4 positionl
LCDOUT SFE, S$CO, "T2=",DEC4 targetl2," PsZ=", DEC4 positionZ

GOTO serial input

serial input:
" Check for input from the server
SERIN2 PICSI, Mode, 10, main, [WAIT(":"),motor,hibyte, lobyte]

IF motor = 1 THEN
hibytel = hibyte
lobytel = lobyte

ENDIF

IF motor = Z THEN
hibyte2 = hibyte
lobyte?2 lobyte

ENDIF

targetl = hibytel*256 + lobytel
target?2 hibyte2*256 + lobyteZ2

GOTO main

stopl:
' Stop if a limit switch is triggered and wait for a reverse commmand
mot pwrl = 0
mot pwrZ = 0
WHILE end limitl = 1 OR end limit2 = 1
ADCIN 0, positionl
ADCIN 1, position2
IF targetl < positionl THEN
motorl dx = 0
mot pwrl = 255
HPWM 1, mot pwrl, 20000
GOTO lcd
ENDIF

IF target2 > positionZ THEN
motor2 dx =1
mot pwrZ = 255
HPWM 2, mot pwr2, 20000
GOTO lcd

ENDIF

HPWM 1, mot pwrl, 20000
HPWM 2, mot pwrZ, 20000

LCDOUT S$FE, 1
LCDOUT SFE, 580, "T1=",DEC4 targetl,'" Psl=", DEC4 positionl £
Display speed

Appendix C — Linear Actuator Program (continued)

LCDOUT SFE, S$CO,

SERIN2 PICSI, Mode,

IF motor = 1 THEN
hibytel
lobytel

ENDIF

IF motor = Z THEN

hibyte2 = hibyte
lobyte2 = lobyte

ENDIF

targetl = hibytel*256 + lobytel
hibyte2*256 + lobyteZ2

target?z
WEND

GOTO main

"T2=",DEC4 target2,6 " DEC4 position?Z

[WATIT(":") ,motor,hibyte, lobyte]

hibyte
lobyte

Page 18

Page 19

Appendix D — Gripper Motor Program

P FY S was 877A gripper.pbp

' . Started..: 3/16/10

' Microcontroller used: Microchip Technology 16FB77A
! microchip.com

' PicBasic Pro Code: micro-Engineering Labs, Inc.

! melabs.com

' The gripper is initialized to the open position

' and then the program waits for serial input from
' the server. If the input is the value 158 then

' the gripper will open if closed, and if the value
' 15 246 the gripper will close if open. If

’ 16F877A Pin Wiring

& ESggpamslmegrmaames iEmesescmiiimesi

: ANO Pressure Sensor

! RB4 Direction pin on motor driver

! RC1 PWM Motor 1 on motor driver

! MCLR +5V through 4.7K Resistor

! VDD +5V

' Vss Ground

! 0SCl1 & 0Sscz2 8 MHz Crystal w/ 2-22 pF Cap. to GND

S L Defines----——-——---—---
DEFINE OSC 8§ ' Define the oscillator at 8 MHZ
DEFINE LCD DREG PORTD ' Define LCD Data port as PORTD
DEFINE LCD DBIT 4 ' Set starting Data bit as RD4
DEFINE LCD BITS 4 ' Set LCD bus size as 4
DEFINE LCD RSREG PORTE ' Set LCD Select Register port as PORTE
DEFINE LCD RSBIT 0 ' Select Select Register bit as RE(
DEFINE LCD EREG PORTE ' Set LCD Enable port as PORTE
DEFINE LCD EBIT 1 ' Select Select Register bit as RE1
DEFINE LCD LINES 2 ' Set number of lines on display as 2
DEFINE LCD COMMANDUS 2000 ' Set command delay time in micro seconds
DEFINE LCD DATAUS 50 ' Set data delay time in micro seconds
DEFINE ADC BITS 10 ' Set number of bits in result as 8
DEFINE ADC CLOCK 3 ' Set clock source (rc = 3)
DEFINE ADC SAMPLEUS 50 ' Set sampling time in micro seconds
DEFINE CCP2Z REG PORTC ' Set HPWM Channel 2 port to PORTC
DEFINE CCP2Z BIT 1 ' Set HPWM Channel 2 pin to RCI
DEFINE CCPl1 REG FPORTC ' Set HPWM Channel 1 port to PORTC
DEFINE CCPl BIT 2 ' Set HPWM Channel 1 pin to RCZ

e e Variables-—-—-—-—-——-—---—-
motorl_dx VAR PORTB.4 ' Motor direction pin
MODE VAR WORD ' WORD for MODE value
gripper Action VAR BYTE ' Variable target set up as a BYTE

motor VAR BYTE ' Motor input variable

Page 20

Appendix D — Gripper Motor Program (continued)

mot pwrl VAR BYTE ' PWM motor power

pressure_sensor VAR WORD ' 1ébit WORD pressure sensor value
limit switchl VAR PORTB.3 ' Open limit switch pin

PICSI VAR PORTB.2 ' Input from serial conneciton pin
PICSO VAR PORTB. 5 '

7777777777 Initialization————-—————-

Qutput to serial connection pin

ADCON1 = %10001110 ' Set ANO to analog, all other to digital
CCP2CON = %00111111 ' Set CCP2 to PWM mode
CCPICON = 300111111 ' Set CCPl1 to PWM mode
TRISA = $11111111 ' Set TRISA register, all ports as inputs
TRISB = %00001000 ' Set RB.3 to input, all others outputs
PORTB = 0 ' Set PORTB to 0OV
TRISC = %00000000 ' Set all pins in PORTC as outputs
PORTC = 0 ' Set PORTC to 0OV
mode = 84 ' Set RX/TX speed to 84 (9600 baud)
gripper Action = 158 ' Set gripper Action variable to 158, or
open
mot pwrl = 0 ' Set motor power to zero
e Main Code---—--—--—-——-
PAUSE 500 ' Start up LCD
main:
ADCIN 0, pressure_sensor ' Convert the analog value of the pressure

' sensor on ANC to a

' Check if the gripper is open or closed
IF pressure sensor < 800 THEN GOTO stopl

IF limit switchl = 1 THEN GOTO stopZ

' Determine gripper action
IF gripper Action = 158 THEN

motorl dx =1
mot pwrl = 255
HPWM 1, mot pwrl, 20000
GOTO lcdl
ENDIF

IF gripper Action = 247 THEN
motorl dx = 0

mot pwrl = 255
HPWM 1, mot pwrl, 20000
GOTO lcdZ2
ENDIF
GOTO main ' Return to main

END

ledl:

10bit digital value

Page 21

Appendix D — Gripper Motor Program (continued)

' Output sensor data and current status - in this case opening
LCDOUT SFE, 1

LCDOUT SFE, $80, "Input = ", DEC3 gripper Action, " OG" ' Display
speed

LCDOUT SFE, SCO, "Pressure = ", DEC4 pressure sensor

ADCIN 0, pressure sensor

SERIN2 PICSI, Mode, 10, main, [WAIT(":"),motor,gripper Action]

GOTO main
led2:

' Qutput sensor data and current status - in this case closing
LCDOUT SFE, 1

LCDOUT SFE, $80, "Input = ", DEC3 dgripper Action, " CG" ' Display
speed

LCDOUT SFE, 3CO, "Pressure = ", DEC4 pressure_ Sensor

' Check for input from the server

SERIN2 PICSI, Mode, 10, main, [WAIT(":"),motor,gripper Action]

GOTO main
stopl:

x =0

WHILE pressure_ sensor < 700

ADCIN 0, pressure_ sensor

IF gripper Action = 158 THEN
motorl dx =1
mot pwrl = 255
HPWM 1, mot pwrl, 20000
GOTO lcdl

ENDIF

HPWM 1, 0, 20000

' Output sensor data and current status - in this case closed

LCDOUT SFE, 1

LCDOUT SFE, $80, "Input = ", DEC3 gripper_ Action, " C" !
Display speed

LCDOUT SFE, 5C0, "Pressure = ", DEC4 pressure sensor

' Check for input from the server
SERIN2 PICSI, Mode, 10, stopl, [WAIT(":"),motor,gripper Action]
WEND
GOTO main
stop2:
x =0
WHILE limit switchl = 1
ADCIN 0, pressure sensor
IF gripper Action = 247 THEN
motorl dx = 0

mot pwrl = 255
HPWM 1, mot pwrl, 20000
GOTO lcd2

ENDIF

Page 22

Appendix D — Gripper Motor Program (continued)

HPWM 1, 0, 20000

' Qutput sensor data and current status - in this case open
LCDOUT SFE, 1
LCDOUT SFE, 580, "Input = ", DEC3 gripper Action, " O
LCDOUT SFE, SCO, "Pressure = ", DEC4 pressure sensor
' Check for input from the server

SERIN2 PICSI, MODE, 10, stopZ, [WAIT(":"),motor,gripper_Action]
WEND

GOTO main

Page 23

Appendix E - JAVA Arm Server

/**
* Class ArmServer recieves the connection request from the Client class and
* sends the data recieved on the socket to the processinput() method of the

* ArmPrototcol class
¥

* @version 19 April 2010
*/

import java.net.*;
import java.io.*;

public class ArmServer

{

//Define variables
public static String inputLine;

/**

* Main method

*/

public static void main(String[] args) throws IOException

{
System.out.printin("Initializing");

//nitialize the socket connection

ServerSocket serverSocket = null;

try
{
serverSocket = new ServerSocket(4444);
}
catch (IOException e)
{

System.err.printin("Could not listen on port: 4444.");
System.exit(1);
}

Socket clientSocket = null;

try
{

clientSocket = serverSocket.accept();

Page 24

}
catch (IOException e)

{

System.err.printin("Accept failed.");
System.exit(1);
}

//nitialize the input and output streams for the socket connection
PrintWriter out = new PrintWriter(clientSocket.getOutputStream(), true);

BufferedReader in = new BufferedReader

(

new InputStreamReader

(
clientSocket.getInputStream()

)
);

//Establlish arm_protocol object
ArmProtocol arm_protocol = new ArmProtocol();
//Recieve input and process it

while ((inputLine = in.readLine()) != null)

{
System.out.printin("Client: " + inputLine);
String delims = "[]+";
String[] positions = inputLine.split(delims);
for(int i = 0; i < positions.length; i++)

{
System.out.printin(i + ": " + positions][i]);
}
arm_protocol.processinput(positions);
}

//Close the socket and the streams

System.out.printin("Closing");
out.close();

in.close();
clientSocket.close();
serverSocket.close();

Page 25

Page 26

Appendix F — JAVA Server Protocol

/**

* Class ArmProtocol recieves the data from class ArmServer and
* sends it through the RS232 serial COM ports to the microcontrollers
*

* @version 19 April 2010

*/

import gnu.io.CommPort;

import gnu.io.CommPortldentifier;

import gnu.io.SerialPort;

import gnu.io.SerialPortEvent;

import gnu.io.SerialPortEventListener;

import java.io.*;

import java.io.lOException;
import java.io.InputStream;
import java.io.OutputStream;

import java.net.*;

public class ArmProtocol

{

//instance variables
int[] oldPositions;

SerialPort serialPortl,serialPort2,serialPort3,serialPort4;
InputStream inl, in2, in3, in4;

OutputStream outl, out2, out3, out4;

/**

* Constructor for ArmProtocol objects

*/

ArmProtocol()

{

oldPositions = new int[4];

for(int position : oldPositions)

{
position = 0;

}

try

}

connect("COM1");

}
catch(Exception e){}

try

{
connect("COM2");

}
catch(Exception e){}

try

{
connect("COM7");

}
catch(Exception e){}

try

{
connect("COMS8");

}
catch(Exception e){}

/**

* Method connect initializes the COM port identified in portName

*

* @param portName Port to be initialized

*

@return void

*/

void connect (String portName) throws Exception

{

Page 27

CommPortldentifier portidentifier = CommPortldentifier.getPortldentifier(portName);

if (portldentifier.isCurrentlyOwned())

{

System.out.printin("Error: Port is currently in use");

}

else

{

if(portName.equalsignoreCase("COM1"))

{

CommPort commPort = portldentifier.open("PIC1",2000);
if (commPort instanceof SerialPort)

{

System.out.printin("Setting up COM1");
serialPortl = (SerialPort) commPort;

Page 28

serialPortl.setSerialPortParams(9600,SerialPort.DATABITS_8,SerialPort.STOPBITS_1,SerialPor
t.PARITY_NONE);

inl = serialPortl.getInputStream();
outl = serialPortl.getOutputStream();

serialPortl.addEventListener(new SerialReader(inl));
serialPortl.notifyOnDataAvailable(true);
}

else

{
System.out.printin("Error: Only serial ports are handled by this example.");
}
}
if(portName.equals("COM2"))

{
CommPort commPort = portldentifier.open("PI1C2",2000);

if (commPort instanceof SerialPort)

{
System.out.printin("Setting up COM2");
serialPort2 = (SerialPort) commPort;

serialPort2.setSerialPortParams(9600,SerialPort.DATABITS_8,SerialPort.STOPBITS_1,SerialPor
t.PARITY_NONE);

in2 = serialPort2.getInputStream();
out2 = serialPort2.getOutputStream();

serialPort2.addEventListener(new SerialReader(in2));
serialPort2.notifyOnDataAvailable(true);

}

else

{
System.out.printin("Error: Only serial ports are handled by this example.");
}
}
if(portName.equals("COM7"))
{
CommPort commPort = portldentifier.open("PIC3",2000);
if (commPort instanceof SerialPort)
{
System.out.printin("Setting up COM7");
serialPort3 = (SerialPort) commPort;

Page 29

serialPort3.setSerialPortParams(9600,SerialPort.DATABITS_8,SerialPort.STOPBITS_1,SerialPor
t.PARITY_NONE);

in3 = serialPort3.getInputStream();
out3 = serialPort3.getOutputStream();

serialPort3.addEventListener(new SerialReader(in3));
serialPort3.notifyOnDataAvailable(true);
}

else

{
System.out.printin("Error: Only serial ports are handled by this example.");
}
}
if(portName.equals("COMS8"))

{
CommPort commPort = portldentifier.open("PIC4",2000);

if (commPort instanceof SerialPort)

{
System.out.printin("Setting up COMS8");

serialPort4 = (SerialPort) commPort;

serialPort4.setSerialPortParams(9600,SerialPort.DATABITS_8,SerialPort.STOPBITS_1,SerialPor
t.PARITY_NONE);

in4 = serialPort4.getInputStream();
out4 = serialPort4.getOutputStream();

serialPort4.addEventListener(new SerialReader(in4));
serialPort4.notifyOnDataAvailable(true);

}
else
{
System.out.printin("Error: Only serial ports are handled by this example.");
}
}
}
}
/**

* Class SerialReader recieves any input from the PIC microcontrollers.
* It is currently unused as communication only is transmitted, not
* recieved.

*/

public static class SerialReader implements SerialPortEventListener

{

}

private InputStream in;
/**
* Constructor for SerialReader objects
*/
public SerialReader (InputStream in)
{
this.in =in;
}
/**

* Method serialEvent processes any data recieved from the COM ports
E3

* @param arg0 Serial Input

*/

public void serialEvent(SerialPortEvent arg0)

{

}

/**
* Method processinput parses the String data in the positions array
* into integers and sends it through the COM ports.

*

* @param positions Positions from Client
* @return void

*/

public void processinput(String[] positions)

{

String gripper_Action;

int[] intPositions = new int[positions.length-1];
for(inti = 0; i < positions.length-1; i++)

{

intPositions[i] = Integer.parselnt(positions]i]);

}
gripper_Action = positions[positions.length-1];
try

{
for(inti=0;i<100;i++)

Page 30

Page 31

{

if(intPositions[0] != oldPositions[0])

{
System.out.printin("Writing 0," + intPositions[0]/256 + "," + intPositions[0]%256 +

" on COM1");

outl.write(":".getBytes());
outl.write(0);
outl.write(intPositions[0]/256);
outl.write(intPositions[0]%256);

}

if(intPositions[1] != oldPositions[1])

{
System.out.printin("Writing 1," + intPositions[1]/256 + "," + intPositions[1]%256 +
" on COM2");
out2.write(":".getBytes());
out2.write(1);
out2.write(intPositions[1]/256);
out2.write(intPositions[1]%256);

}

if(intPositions[2] != oldPositions[2])
{
System.out.printin("Writing 2," + intPositions[2]/256 + "," + intPositions[2]%256 +
" on COM2");
out2.write(":".getBytes());
out2.write(2);
out2.write(intPositions[2]/256);
out2.write(intPositions[2]%256);

}

if(intPositions[3] != oldPositions[3])

{
System.out.printIn("Writing 3," + intPositions[3]/256 + "," + intPositions[3]%256 +

" on COM7");
out3.write(":".getBytes());
out3.write(3);
out3.write(intPositions[3]/256);
out3.write(intPositions[3]%256);

}

if(gripper_Action.equals("Open"))

{
System.out.printin("Writing 4," + 158 + " on COM8");

Page 32

outd.write(":".getBytes());
out4.write(4);
outd.write(158);

}

else if (gripper_Action.equals("Close"))

{
System.out.printin("Writing 4," + 247 + " on COM8");

outd.write(":".getBytes());
out4.write(4);

outd.write(247);
}

else

{
System.out.printin("Writing 4," + 0 + " on COMS8");

outd.write(":".getBytes());
out4.write(4);

outd.write(0);

}
}
}
catch(IOException e)
{
}
oldPositions = intPositions;

}
}

Date Task & Comments Time Team
King
Shepard
9/10/2009-9/21/2009 ##t 6 Hours P
Sorrels
Spencer
W
10/8/2009 Completed part two of the rotational base for the internet arm. We also worked on a second gripper prototype. 3 Hours Sh;;ird
We started the server-side Java program, creating comunication protocol. Working on serial communication with the PIC
microcontroller. We are currently using a socket to communicate over a LAN. We worked further on the user side communications King
10/26/2009-10/29/2009 |(GUI) for the internet arm. We established new panels and began layout, but had difficulty with the layout. We redrilled and 6.5 Hours Shepard
remounted the base motor. Also, the platform was cut to regulation size, and two 30 degree angles were cut to fit the posterboard. Spencer
We worked further on serial communications and learned how to identify necassary ports.
11/19/2009 We succesfully programmed serial communication link to operate servo 3 Hours Spencer
Kin
Testing: we were able to turn a servo motor via PIC microcontroller, and also flash an LED on and off from a PC. We assembled three| Shel frd
12/7/2009-12/10/2009 [main segment joints with modified hinges and created a skeleton frame of the arm on Solidworks and finished CAD work of the 8.5 Hours Sorprels
main table. We outputted the motor encoder target PIC microcontrollers from the PC. A motor controller H-bridge was blown out. Spencer
We fixed the motor drivers and worked on outputting integers over a LAN.We worked on designing CAD variations of the pulley King
12/14/2009-12/17/09 |design, for operating the arm. We successfully outputted a 16-bit number over the network to command a motor with an encoder. 5.5 hours Shepard
We were able to report the position back to the server. Spencer
CAD designs continue to change, while the GUI and socket communication work continued. We constructed the base of the arm King
1/7/2010-1/14/2010 based on the CAD. From this a physical testing prototype was constructed. A motor position was outputted to a PIC microcontroller, 10 Hours Shepard
but are having difficulties with multiple command strings. Spencer
1/18/2010-1/21/2010 W? are having continuing problems with command strings, however have come close to solving it. Two motors now work with PIC 6.5 Hours Spencer
Microcontrollers
1/25/2010-1/28/2010 We have‘finally decided to switche the Pu‘lley lsystem with linear actu?tors. The rt?duces PIC Micrc?ntrollers t}) two and two serial 5.5 Hours Shepard
communicators. We have encoutered difficulties with which we can find no solution thus are continuing testing. Spencer
2/1/2010-2/4/2010 We made design changes to account for the change to linear actuators. The CAD model was updated for changes. 5.5 Hours Spencer
2/8/2010-2/12/2010 The computer we had been using for Pic Basic Programming had an unknown glitch when compiling. 6.5 Hours Spencer
2/15/2010-2/18/2010 New serial ports were installed for more motor communication, and server protocol was made for receiving 7 Hours Spencer
We mounted the third section of the arm on CAD and constructed the segment. Encountered Macro error with motor Kin,
2/22/2010-2/25/2010 unted ' ! Y 8 " w 6.5 Hours "8
communication that has not been solved yet Spencer
3/1/2010-3/4/2010 The arm base was completed and cooling fans were added to the base for colling the electronics. The gripper for the arm, a 7 Hours Shepard
leadscrew system, was mounted to the arm Spencer
The final circuit was completed, but burned two LCDs out with high amperage. The fram of the arm with motors is completed, no Shepard
3/8/2010-3/11/2010 nal cireuit w pleted, but burned tw Ut with high amperag w s comp W 8 Hours P
we are placing sensors on specific areas of the arm. Spencer
3/15/2010-3/18/2010 [The finalised circuit was debugged and commands from computer work. We wired limit switches on the arm. 6 Hours Spencer
3/22/2010-3/25/2010 |Added astetics to the arm and worked on encoder brackts. 4.5 Hours Shepard
4/1/2010-4/6/2010 Completed encoder and shaft brackets, set upt testing prototypes. Wrist limit switches programmed. 6 Hours Shepard
4/8/2010-4/12/2010 Created brackets for specialised limit switches on the end of the arm and mounted on gripper plate 6 Hours King Spencer
4/13/2010-4/18/2010 |Began final documentation and poster, while programming the switches and making final changes 7 Hours King Spencer
4/19/2010-4/21/2010 |Finalised the poster and technical report for the State Conference 10 Hours King
5/3/2010-5/10/2010 Began work on Fhe transi'tion fron? LAN communication t? Intern?t conr)mun?cation. We researched webcams for use on the arm, 8 Hours King
and ordere 3 Microsoft LifeCam Cinema webcams to begin experimenting with Spencer
Continued work on programming changes from LAN to Internet communication and also began work on the final housing for the
5/10/2010-5/17/2010 _I u W Prog né & unicat ganw : using 7.5 Hours Spencer
arm inside of our shop.
. . . King
Successfully were able to control two of the motors of the arm over the internet. Received a new leadscrew for the gripper of the
5/17/2010-5/24/2010 ! Ly were oL two) & am ov I v ew v griep 7 Hours Shepard
arm and adapted it to our existing gripper. This resulted in higher speed and a smoother running for thegripper Spencer
Kin
5/24/2010-5/31/2010 Were completely able to control the arm‘over the intern?t util‘isin'g'the GUI. Now we have begun }NOI’k on irTcoporatir\g webcams 2.5 Hours Shelpfrd
into the GUI for remote control over the internet. The gripper is finished and work has begun again on the final housing of the arm Spencer
We began testing with webcams using JMF studio and FMJ studio; media java programs, possibly being adapted to transmit our
6/1/2010-6/8/2010 webcams. However it can not trnasmit webcams that utilise the same driver, which means we must purchase two other webcams off 8.5 Hours Spencer
different manufacturers.
Kin
6/8/2010-6/15/2010 We have finlished the final housing of the arm in the shop. We have ftopped using JMF and FMJ studios and are writing our own 10 Hours Shelpfrd
programs, since these two programs are outdated, and non compatible.
Spencer
. . . King
Have made two webcams function over the GUI as well as reconfirmed that the arm works over the internet. We have begun
6/15/2010-6/22/2010 v wow unction ov w ' works ov ' ve begu 12 Hours Shepard

working on documentation and posters; updating them from the state versions.

Spencer

	Arm Title Page
	TSA Nationals Report.pdf
	Plan of work log

