```
'----Title-----
' File.....proportional_1.pbp
' Started....3/15/08
' Microcontroller used: Microchip Technology 16F88
                       microchip.com
' PBPro Code, micro-Engineering Labs, Inc.
             melabs.com
'-----Program Desciption-----
' proportional 1.pbp seeks a specific light level using
' proportional control, that is, the output adjusts
' proportionally to changes in the input. If the light
' sensor value is close to the target light value, the
' robot moves slowly; if the light sensor value differs
' greatly from the target light value, the robot
' moves more quickly.
' The program uses the PicBasic Pro command PAUSEUS
' to generate a PWM signal to control motor speed.
' This simplified the program rather than using the
' PWM and HPWM commands.
'----New PIC Commands-----
' PAUSEUS Period
' Pauses the program for the period in microseconds
'----PIC Connections-----
       16F88 Pin
                             Wiring
       -----
                          _____
                         Center lead CdS voltage divider
        RA0
         RA3
                          LCD Enable (E)
         RA4
                         LCD Register Select(RS)
                         PWM Motor 2
         RB0
        RB1
                         Direction Motor 2
         RB2
                         PWM Motor 1
                          Direction Motor 1
         RB3
                          LCD (DB4)
         RB4
        RB5
                          LCD (DB5)
                          LCD (DB6)
        RB6
                          LCD (DB7)
         RB7
       See schematic for the other usual PIC connections
'-----LCD Connections-----
       LCD Pin
                           Wiring
                        Ground(Vss)
          1
         2
                        + 5v(Vdd)
                         Center of 20K Pot(Contrast)
          3
          4
                         RA4(Register Select,RS)
          5
                         Ground(Read/Write,R/W)
```

```
RA3(Enable)
          7
                          No Connection(DB0)
                          No Connection(DB1)
          8
          9
                         No Connection(DB2)
         10
                         No Connection(DB3)
         11
                          RB4 ( DB4 )
         12
                          RB5 ( DB5 )
         13
                          RB6 (DB6)
         14
                          RB7 (DB7)
'----Constants/Defines-----
' To free up ANO and AN1 (Pins RAO and RA1) for
' an analog input, the default LCD data lines, DB4-DB7,
' function must be removed from RAO - RA3. In this
' program, we will only be using ANO, pin RAO.
' The LCD data lines are relocated to PORTB.4 - PORTB.7
' (RB4-RB7) using the LCD DEFINE statements below.
' Enable is relocated to PORTA.3. All other default
' LCD pins and functions are left unchanged.
   DEFINELCD_DREGPORTB'Sets PORTB as LCD data portDEFINELCD_DBIT4'Start data connections to bit 4
   DEFINE LCD_DBIT 4 'Start data connections to
DEFINE LCD_EREG PORTA 'Sets PORTA as Enable port
   DEFINE LCD_EBIT 3
                              'Sets bit 3 as the Enable bit
   DEFINE ADC_BITS 10
                               'Sets the number of bits in
                               'the result to 10
'-----Variables-----
                               'Word for 10-bit cds_read variable
   cds_read
                VAR WORD
                              'Word for desired or target light value,L0
   L0
                VAR WORD
                               'Word for difference between cds_read
   diff
                VAR WORD
                               'and desired light value, LO, if cds_read
                               'is greater than L0
   diff1
                               'Word for difference between cds_read
           VAR WORD
                               'and desired light value, LO, if cds_read
                               'is less than or equal to L0
                              'Word to store pulse_width
   pulse_width VAR WORD
'----Initialization-----
   ANSEL = %0000001
                               'Leaves AN0 & AN1 in analog mode, but
                               'changes other analog bits to digital.
                               'See table below.
    Analog Bit Analog or Digital PIC16F88 Pin
                 _____
   _____
       ANO
                      Analog
                                             RA0
                     Digital
       AN1
                                            RA1
       AN2
                     Digital
                                             RA2
       AN3
                      Digital
                                             RA3
       AN4
                     Digital
                                             RA4
```

```
Digital
       AN5
                                             RB6
       AN6
                      Digital
                                             RB7
   ADCON1 = %10000000
                           'Right justifies 10-bit value of variables
                            'in 16-bit WORD. Adds "0" in the
                            '6 Most Significant bits of the Word,
                            'shifting the 10-bit value of x to
                            'the right.
                           'Sets the internal oscillator in the
   OSCCON = $60
                            '16F88 to 4 MHz
   TRISB = %00000000 'Sets all pins in PORTB as outputs
'-----Main Code-----
   PAUSE 1000
                                'Pause to allow LCD to setup
start:
   ADCIN 0, cds_read
                                'Read analog voltage on ANO, pin RAO,
                                 'and convert to 10-bit digital value
                                'and store as cds_read.
   LCDOUT $FE,1,"CdS Read = ", DEC cds_read
                                 'Clears LCD screen, displays
                                 '"Cds Read = " and the 10-bit
                                 'value of cds read
   L0 = 512
                                 'Establish target light value at 512
                                'If condition is true, proceed to
   IF cds_read > L0 THEN
                                 'next command line, if the condition
                                 'is false, that is, cds_read <= L0,
                                 'then proceed to ELSE
   LCDOUT $FE,$C0, "diff = ", DEC diff
                                 'Cursor moves to beginning of second
                                 'line, displays "diff = " and the 10-bit
                                 'value of diff
   GOSUB forward
                                 'Jump to subroutine forward
   ELSE
                                 'Program jumps here if the
                                 'cds read > L0 condition in the IF - THEN
                                 'statement is false. Continues to the
                                 'following command statement
   LCDOUT $FE,$C0,"diff1 = ", DEC diff1
                                 'Cursor moves to beginning of second
                                 'line, displays "diff1 = " and the 10-bit
                                 'value of diff1
   GOSUB backup
                                'Jump to subroutine backup
```

```
ENDIF
                                'Jump to start label
    GOTO start
    END
forward:
                                 'Subroutine forward
    diff = cds read - L0
                                 'Find difference between target or desired
                                 'light value and CdS sensor light value
                                 'when L0 < cds read
    pulse_width = diff * 39
                                 'Calculates pulse_width by multiplying
                                 'diff value * 39. If maximum diff value
                                 '(512) is multiplied by 39,
                                 'pulse_width = 19968, giving an almost
                                 '100% duty cycle into the H-bridge
                                 'As the robot approaches the target light
                                 'value, the duty cycle approaches 0%.
    HIGH 1 : HIGH 3
                                 'Set the direction of Motors 2 and 1
                                 'to forward
                                 'Leading edge of pulse into PWM input
    HIGH 0 : HIGH 2
                                 'pins of SN754410 H-bridge for
                                 'Motors 2 and 1.
                                 'Length of pulse_width in microseconds
    PAUSEUS pulse_width
                                 'This creates the proportional control
    LOW 0 : LOW 2
                                 'Falling edge of pulse
    PAUSEUS 20000-pulse_width 'LOW for 20 ms period - pulse_width
    RETURN
backup:
                                 'Subroutine backup
    diff1 = L0 - cds read
                                 'Find difference between target or desired
                                 'light value and CdS sensor light value
                                 'when L0 > cds read
    pulse width = diff1 * 39
                                 'Calculates pulse_width by multiplying
                                 'diff1 value * 39. If maximum diff1 value
                                 '(512) is multiplied by 39,
                                 'pulse_width = 19968, giving an almost
                                 '100% duty cycle into the H-bridge
                                 'As the robot approaches the target light
                                 'value, the duty cycle approaches 0%.
                                 'Set the direction of Motors 2 and 1
    LOW 1 : LOW 3
                                 'to reverse
    HIGH 0 : HIGH 2
                                 'Leading edge of pulse into PWM input
                                 'pins of SN754410 H-bridge for
```

'Motors 2 and 1.

PAUSEUS pulse_width 'Length of pulse_width in microseconds

'This creates the proportional control

LOW 0 : LOW 2 'Falling edge of pulse

PAUSEUS 20000-pulse_width 'LOW for 20 ms period - pulse_width

RETURN